
The use of Tcl/Tk in the AnatLab Virtual Anatomy
Laboratory

Cyndy Lilagan, Mike Doyle, Steve Huntley, Steve Landers

Iomas Research LLC
Wheaton, Illinois

ABSTRACT

The AnatLab system provides an interactive Web environment for exploring human
anatomy, including the locations, identities, relationships and extents of anatomical
structures, as well as associated textual information. An early version of AnatLab
was demonstrated at Tcl2008[1], and this paper goes beyond that to describe a
number of the Tcl-based technologies used to create AnatLab.

1 Introduction and Background

The National Library of Medicine Visible Human [2] male data set includes a series of 1,871
anatomical images representing 1mm axial (i.e. transverse or cross-section[3]) color
cryosections through a male cadaver.

The Iomas AnatLab system is a Web-based navigator that allows users to browse through these
sections. It also contains an atlas of the structures on each section, allowing the user to click on
any area of any section through the body to have the system immediately identify the
anatomical structure and provide a variety of information related to that structure.

AnatLab uses a technique called zMapping to achieve this. An x,y coordinate in a section image
is used to look up the the color value at the same location in a secondary colormap of 24-bit
voxels. AnatLab uses the RGB triplet found in the secondary map as a unique 24-bit object
index into a database containing related anatomical structure information.

The process of identifying the boundaries of a structure on a particular section is called
annotation. AnatLab has over 2500 structures identified in this way – a total of over 150,000
individual annotations in the axial plane alone. But AnatLab also supports sections in the
coronal (front-to-back) [4] and sagittal (left-to-right) [5] planes using images derived from the
axial sections. This involves a total of over 4600 sections and 700,000 annotations overall.

The AnatLab client is a browser-based application that uses modern Web techniques such as
Ajax[6] and the HTML5 canvas[7] to provide a rich and responsive user experience.

The AnatLab back-end infrastructure comprises a number Tcl-based technologies, including:
• a Tk-based graphical anatomical annotator
• a Tcl-scripted annotation processor for generating the zMap files and databases
• Ajax Web services based on a Tcl Web server
• Tcl services that support the flash-based search plugin
• a database for fast hashed access to anatomical structure information
• a Tcl anatomy name server that replaced a slower and more complex Java version
• a rendering system for generating 3D virtual reality models

It is the use of Tcl/tk in this back-end infrastructure that is the focus of this paper. The
conference presentation will also include an extended demonstration of the AnatLab client.

2 The Anatomical Annotator

The AnatLab annotator is a Tk-based graphical annotation tool used by anatomical experts to
define the boundaries of structures on each section in the Visible Human data set.

Annotation is an ongoing activity: the members of the 2009 summer annotation team were the
head anatomist, a neuro-anatomist, seven medical students, a biomedical visualization student,
a programmer and the quality control team. Over 11,000 annotations were created involving
approximately 100 new anatomical objects.

The user (i.e. the anatomy expert) chooses an anatomical object name (or creates a new one)
and identifies the object by drawing polygons on magnified cross-sectional images. The
polygons can comprise multiple line segments or smoothed splines; and can be edited, copied
or pasted to other sectional images.

The polygons are saved to a text file (called a map file) for post-processing into the zMap
colormap. The map files contain the name and coordinates of each anatomical object, a time
stamp, the author, the start point and sectional image number. The map file also includes
information to assist in subsequent processing, e.g. whether the polygon is segmented or
smooth, or if there are restrictions such as only overwriting particular structures like connective
tissue or subcutaneous fat.

The annotator uses a number of Tcl and Tk extensions and techniques (including a number
from the Tclers' Wiki) including:

• Canvas item selections [8]
• Simple zooming and scaling in a canvas [9]
• Image scaling [10]
• Drawing and editing polygons [11]
• Canvas Zooming [12]
• Colors with Names [13]
• Maze Solver [14]
• Canvas: Polygons from lines [15]
• Getting the Canvas View Area in Pixels [16]

The drawing commands were enhanced to support magnification and scaling. An accurate
representation of the magnified drawing was achieved by allowing the drawing of nodes only
onto pixel locations that would persist once the image was scaled back down to its original
resolution. The copy/paste commands for canvas objects were enhanced to allow storage of
the identification and processing information for each object.

An edge walking utility is used to define the polygons for already-defined objects, and to create
map files (i.e. polygons) to be used in the Annotator program. Given a structure's RGB value,
the edge walker will detect the boundaries of the object within a given section and then
generates polygons to represent these.

The following screen image shows the annotator being used to annotate the ethmoid sinuses.

3 The Annotation Post-processing

The Annotation processor is a Tcl program that takes the annotator map files and generates
zMap colormap images corresponding to each section. A separate imagemap is generated for
each section. Each one contains the RGB color images for all the structures identified on the
section.

The processor performs quality control and consistency checking along the way, including
checks for overwrite restrictions (some structures such as connective tissue are routinely
overwritten as annotations improve).

Automated quality and consistency checks also include identifying:
• objects (i.e. annotated structures) that do not have a contiguous range of sections
• objects without names
• colors in the colormap images that do not have an associated structure name in the

database
• unused colors in the RGB space
• colors in the database that do not appear in colormap images

The following show the output from the annotation post-processing: the left-most image shows
a colormap image corresponding to the above Annotator screenshot, and the right image shows
the grayscale equivalent with the ethmoid sinuses highlighted.

The annotation processor uses the SQLite database [17] for storage of structure and polygon
information during processing.

4 Generating Derived Sagittal and Coronal Sections

It is helpful to be able to view anatomical structures from various angles, to get a better sense of
their orientation in the body. Although the Visible Human dataset only contains sections in the
axial plane, the AnatLab zMap database contains the coordinates of structure boundaries as a
collection of three-dimensional data. So extraction of coordinates for a given structure along any
desired plane is possible. Given this, it was decided to add coronal and sagittal support to the
AnatLab client: a feature requested by a number of the AnatLab users.

The AnatLab user interface was enhanced to support coronal (front) and sagittal (side)
orientation for viewing features of interest, and section images in these two planes were
generated (i.e. derived) from the axial section images. This was done by:

• decompressing the axial section image files
• assigning each raster line of the images to individual files
• re-assembling the rasters in new configurations to produce contiguous image files in the

desired orientations
• re-translating the resulting image files to JPEG format.

Several utilities from the Netpbm toolset [18] were used to accomplish this task, coordinated by
a Tcl script. In order to take maximum advantage of available multiple core computer
resources, key calls to Netpbm utilites to process large sub-groupings of files were put into
makefiles, since GNU make has the ability to specify that jobs be run in parallel processes.
Necessary parameters for the makefiles were calculated in the controlling Tcl script and passed
from there to make. Processing of files for each orientation required about a week of continual
processing on a 4-CPU desktop computer.

Tcl was an essential tool in this undertaking, because the huge amounts of data which required
processing stressed the available hardware resources and software tools to their limit and
beyond. Tcl was the only tool used whose mean time between failures was not less than the
total time required to complete each task. The exceptional reliability and stability of Tcl, in
addition to the ease with which external processes can be called, controlled and errors trapped,
made Tcl indispensable.

5 The Anatomical Name Server

The zMap database contains over nine Gigabytes of colormap data that must be accessible in
real time from the AnatLab client. The database is designed to be a fast read-only database of
large amounts of multi-dimensional information. It takes the form of a set of colormap TIFF
images. The zMap concept takes advantage of the fact that in a TIFF image, small sets of
raster lines can be compressed individually. The header of a given TIFF file contains offsets to
the location in the file of the start point of each set of separately-compressed lines, thus an
individual pixel can be read quickly by accessing a small subset of the file directly.

This zMapping functionality is handled by a separate process in the AnatLab Server, partly for
historical and partly for performance and scaleability reasons. This process is called the
Anatomical Name Server. The Anatlab Web Server communicates with the Name Server on a
socket via a standard Tcl three-line event-driven server procedure.

When a user selects a feature of interest via the Web browser interface, a client-side image-
map handler passes the coordinates to the AnatLab Web server via a RESTful URL [19]. The
Web server passes the request to the name server, which reads the zMap database to access
the associated structure's unique 24-bit index. This index is used to access the structure's name
from a memory-resident array, and the information is returned to the main AnatLab Web server.

A previous incarnation of the AnatLab product used custom Java code to open, decompress
and retrieve the needed information from the zMap TIFF files. A separate JVM was started for

each retrieval. In order to improve speed and scalability, the Java code was scrapped and
replaced by pure Tcl code. Some TIFF-reading code was adapted from the Tclers' Wiki [20].
The Tcl code is smaller, faster, more scalable, easier to configure and run, and it has proven
easy to refine and add features to it.

6 Generation of Overlay Images

The initial AnatLab user interface highlighted selected structures by re-displaying a new version
of the section image that had the specific structure highlighted. This had two downsides: the
storage space required for each image, and the consequent update time when a user clicks on
a structure. To address this, a new version of the AnatLab Web client was implement that
overlays the section image with a translucent, colored image that matches the shape of the
structure – as shown in the following screenshot.

There is one overlay image corresponding to each annotation, a total of over 700,000 overlay
images across the three planes of view (axial, sagittal and coronal). The size of each overlay is
about an order-of-magnitude smaller than a full section image, so one can see the savings are
significant.

The color overlays are generated following post-processing of the annotations – one per
anatomical structure per section.

Generating overlays is an arduous and resource-intensive process, similar to deriving the
coronal and sagittal images from the axial sections. But unlike the section image generation,
the overlay generation must be done repeatedly, on an ongoing basis as annotations are made,
so there is an incentive to optimize the process. At the outset, a single overlay generation run
took weeks, but refinement of the code, combined with migration of the process to the Amazon
Web Services [21] Cloud Computing environment (and utilization of the largest virtual servers
AWS has to offer), has reduced the time frame to days.

Overlay generation is accomplished by a combination of Netpbm utilities and makefiles
controlled by Tcl scripts, similar to the process of generating the coronal and sagittal section
images. For each colormap file in the zMap database, a list of unique feature indexes
(represented in the file as 24-bit colors) is extracted. A color mask for each feature is
generated, then the color mask is overlaid onto the corresponding section image file, resulting
in a new file containing only the image area of the feature. The overlay image is tinted to
provide a highlight effect when displayed over the section image in a Web browser.

Once completed, overlay files are uploaded to Amazon's S3 [22] static file server, which
provides fast, scalable access to the users worldwide who use AnatLab.

7 Introspection of Section and Overlay Images

The AnatLab user interface needs to be able to obtain the size and position of a structure on a
section. This information is used in a number of ways:

• ensuring the entire section is visible when changing sections
• positioning the section so a structure is visible when highlighted or on return from the

search feature
• drawing a box around the highlighted structure (using a transparent HTML canvas, as

shown in the above screenshot)

The overlay offsets (i.e. the position and size of each structure on each section) are calculated
by post-processing the overlay images. This is done using a Tcl program that calls the
ImageMagick [23] image processing system and extracts the size and position values from the
output:

 convert $image -trim info:-
 image PNG 144x48 1760x1024+804+205 DirectClass 16-bit

The section offsets are calculated in a similar fashion, deriving the position and extent of the
non-black parts of the section images, again using ImageMagick:

 convert $image -transparent black png:- | convert - -trim info:-

The 700,000 plus overlay and section offset records are needed to be stored and retrieved
efficiently when the Web server responds to structure identity requests from the AnatLab Web
client. An issue was how to do this without the need to create and maintain indices, especially
during the development stage. The use of arrays was considered (since these provide hashed
access to data) but the time taken to load the array on Web server startup is too long. A
persistent solution was needed. In the end, the Metakit database system's [24] hashed views
were use to provide fast access without the need for indices. All key values (view, section,
structure) were coerced to integers, the optimal approach with Metakit's use of memory
mapping and column-wise storage. The following timing tests shows performance via the
Mk4tcl[25] interface, and the more object-oriented Mk4too[26] interface – with and without
hashing.

 Mk4tcl
 first = 111.8745 microseconds per iteration = row 0
 mid = 2032466.1815 microseconds per iteration = row 366066
 end = 3589616.7145 microseconds per iteration = row 732012

 Mk4too
 first = 45.2705 microseconds per iteration = row 0
 mid = 229994.4485 microseconds per iteration = row 366066
 end = 393985.3045 microseconds per iteration = row 732012

 Mk4too with hash
 hash = 118 microseconds per iteration
 first = 58.0275 microseconds per iteration = row 0
 mid = 42.0225 microseconds per iteration = row 366066
 end = 50.6565 microseconds per iteration = row 732012

It can be seen that hashing is an extremely efficient way of accessing integer-keyed values. The
"hash" time is the one-off cost of creating the hash when the AnatLab server starts.

Creating a hashed view is straightforward.

create section hash
mk::view layout offset.sect { view:I sect:I x:I y:I w:I h:I }
mk::view layout offset.sect_hash { _H:I _R:I }
set raw [mk::view open offset.sect]
set hash [mk::view open offset.sect_hash]
set sect_offset [$raw view hash $hash 2]

The first line specifies a view (table) that will hold the data, the second line a hash view to
access it. The third line opens the raw (unhashed) view, the next one opens the hash and the
last line creates the hashed view of the data. From there on, all operations are via the
sect_offset handle and result in the performance shown in the output.

8 The AnatLab Web Server

The AnatLab Web server is based on the TclHttpd [27] Tcl-based Web and application server. It
uses typical TclHttpd features, e.g. Direct Domains to map URLs to Tcl procedures within the
server. Where the AnatLab Server differs from many other TclHttpd installations is its support
for Ajax in the client, necessitating non-blocking operations in the server.

Threads might seem the obvious way of addressing this – each Web server request would be
handled by a separate thread and, if it blocked, then other threads would continue to service
requests. But threads introduce complexity and can make debugging more difficult. As Donal
Fellows has said, “When I deal with threading, I work on the principle that the hardware and OS
are my enemies and hate me, and so I code accordingly. It probably doesn't make for a
maximally-efficient program, but it does reduce debugging pain." [28]

So an alternative approach is used in the AnatLab Server: callbacks and the mostly
undocumented but nevertheless very useful HTTPD_SUSPEND operation. HTTPD_SUSPEND
tells TclHttpd to suspend the current operation, allowing it to service other requests. This is
done by a Direct_Url command returning the HTTPD_SUSPEND error code:

return -code error -errorcode HTTPD_SUSPEND

At a later point, the operation can be resumed using the Httpd_Resume command.

This has been used in a number of places within the AnatLab server where it needs to query
information from other Websites using http::geturl. For example, when identifying a structure
using the AnatLab Anatomical Name Server (which runs as a separate process), code similar to
the following is run:

proc identify {v s x y} {
 ...
 set sock [Httpd_CurrentSocket]
 http::geturl $url -command [list AnatLab::finish $sock $v $s]
 return -code error -errorcode HTTPD_SUSPEND

 }

And later, when the http::geturl request finishes and calls the AnatLab::finish command

proc finish {sock vn se token} {
 Httpd_Resume $sock
 http::cleanup $token

...
 Httpd_ReturnData $sock application/json $result

 }

The use of callbacks and a separate Anatomical Nameserver process has allowed AnatLab to
show excellent performance and scaleability – and there is still the potential to use threads if
that should ever be necessary.

9 3D VR Rendering

One of the consequences of the zMap approach is that it is straightforward to extract a
structure's image from a colormap using ImageMagick, by supplying the RGB for the structure.

Further, a mask can be produced that, when applied to the section image, will show just that
structure. The ImageMagick commands to create the mask are:

convert $imagemap -fill '#ffffff' -opaque '#$RGB' \
 -black-threshold 99% +matte $mask

and the commands to apply the mask to the section image, generating a transparent PNG are:

composite -compose CopyOpacity $mask.jpg $section \
 -transparent-color black $result.png

For example, doing this for the Anterior Ethmoid Sinus - Right shown on the previous
screenshots gives the following results: the left image is the mask and the right shows the mask
applied to the section.

A Tcl program automates the process of doing this for all sections for a given structure or
structures. It accepts a spreadsheet containing the name of one or more anatomical structures,
and generates a series of masked images corresponding to the sections where these structures
are found.

The resulting set of masked section images is then input to the Osirix image processing system
[29] and a set of 3D Virtualization models rendered.

For example, the gastrointestinal system has been rendered in several ways, with and without
the associated vascular system. The image on the left below shows the entire gastrointestinal
tract, the image on the right shows the GI vascular system and the spleen.

These 3D renderings can be exported as QuickTime VR models [30] for viewing via a Web
browser.

10 Conclusion

The Iomas AnatLab Virtual Anatomy Laboratory makes extensive use of Tcl/Tk and related
technologies in its back-end infrastructure. Uses vary from the development of graphical
interfaces, to image processing, to the automation of tasks.

In addition, the resources of the Tclers Wiki and the Tcl Community have proven invaluable.

As this project continues, the AnatLab development plans include using the Stargus Project's
Cloud-Computing based Shared Storage facilities to create a shared annotator. It is our hope
that the AnatLab project's extensive use of Tcl will help to demonstrate both the power of the Tcl
platform and its versatility, as well as its suitability for the development and deployment of
extremely high-performance Web applications that exploit cutting-edge technologies to deliver a
highly satisfying user experience.

References

[1] AnatLab at Tcl2008 – http://wiki.tcl.tk/21794
[2] The National Library of Medicine's Visible Human Project -

http://www.nlm.nih.gov/research/visible/visible_human.html
[3] http://en.wikipedia.org/wiki/Transverse_plane
[4] Coronal plane - http://en.wikipedia.org/wiki/Coronal_plane
[5] Sagittal plane - http://en.wikipedia.org/wiki/Sagittal_plane
[6] Ajax - Asynchronous JavaScript and XML –

http://en.wikipedia.org/wiki/Ajax_(programming)
[7] The HTML Canvas – http://en.wikipedia.org/wiki/Canvas_(HTML_element)
[8] Canvas item selections - http://wiki.tcl.tk/8330
[9] Simple zooming and scaling in a canvas – http://wiki.tcl.tk/10381
[10] Image scaling – http://wiki/tcl/tk/8448
[11] Drawing and editing polygons – http://wiki.tcl.tk/3179
[12] Canvas Zooming – http://wiki.tcl.tk/4844
[13] Colors with Names – http://wiki.tcl.tk/16166
[14] Maze Solver – http://wiki.tcl.tk/20634
[15] Canvas: Polygons from lines - http://wiki.tcl.tk/1415
[16] Getting the Canvas View Area in Pixels – http://wiki.tcl.tk/2451
[17] SQLite – http://www.sqlite.org/
[18] Netpbm – http://netpbm.sourceforge.net
[19] REST – Representative State Transfer

http://en.wikipedia.org/wiki/Representational_State_Transfer
[20] Tiff package (in pure tcl) – http://wiki.tcl.tk/9245
[21] Amazon Web Services - http://aws.amazon.com/
[22] Amazon S3 - http://aws.amazon.com/s3
[23] ImageMagick – http://www.imagemagick.org/script/index.php
[24] Metakit – http://www.equi4.com/metakit/
[25] Mk4tcl - http://www.equi4.com/metakit/tcl.html
[26] Mk4too – http://wiki.tcl.tk/8866
[27] TclHttpd – http://wiki.tcl.tk/2085
[28] Donal Fellows, quoted in Threads – http://wiki.tcl.tk/3447
[29] Osirix – http://www.osirix-viewer.com/
[30] QuickTime VR - http://www.apple.com/quicktime/technologies/qtvr/

http://www.nlm.nih.gov/research/visible/visible_human.html
http://en.wikipedia.org/wiki/Sagittal_plane
http://en.wikipedia.org/wiki/Coronal_plane

